Cryptanalysis

Cryptography ThreeB Ed Crowley Fall '08

Topics

- Cryptanalysis
- History
- Modern Cryptanalysis
- Characterization of Cryptanalysis Attacks
- Attack Types

Focus

Cryptanalysis.

Cryptanalysis

 Science of cracking ciphers and codes, decoding secrets, violating authentication schemes, and in general, breaking cryptographic protocols. Cryptanalysis History

- In 1920, The term "cryptanalysis" was coined by William Friedman to describe methods for breaking codes and ciphers.
 - Though, the craft of cryptanalysis is much older.
- For most classical ciphers, frequency analysis is the basic tool.
 - In natural languages, certain letters of the alphabet appear more frequently.
 - In any sample of English plaintext, "E" is likely to be the most common letter.
 - Similarly, the digraph "TH" is the most likely pair of letters.
 - Frequency analysis relies on a cipher failing to hide these statistics.

Rise of Mathematics

- As ciphers became more complex, mathematics became more important in cryptanalysis.
- This change was particularly evident during World War II.
 - Efforts to crack Axis ciphers required new levels of mathematical sophistication.
 - Automation was first applied to cryptanalysis in that era with the Polish Bomba device

Modern Cryptanalysis Context

- By most measures, modern cryptography has become much more impervious to cryptanalysis than the pen-and-paper systems of the past.
- Most attacks are against the implementation and few are against the underlying algorithm.
 - As William Hugh Murray has observed, ... there are an infinite number of ways to implement an algorithm, most of them wrong.
- While we can make statements, about cryptographic strength in the abstract, we can only make statements about security in a specific application and environment context.

Modern Context

Computers have both increased the need for, and decreased the cost of, cryptography.

- Effectiveness of cryptographic algorithms now resides in complexity rather than in secrecy.
- Understand that strong security is different than strong cryptography.
- While modern algorithms are resistant to all but the most resourceful attacks, in practice they are no stronger than the systems and applications in which they are used.

Examples

- The A5/1, A5/2 and CMEA algorithms, used in mobile phone technology, can all be broken in hours, minutes or even in real-time using widely-available computing equipment.
- In 2001, Wired Equivalent Privacy (WEP), a protocol used to secure Wi-Fi wireless networks, was shown to be susceptible to a practical related-key attack.

Characterizing Cryptographic Attacks

Goal

- Gain ability to decrypt new cipher text
 - Without additional information.
 - Intermediate goal: crack message key.
- Attacks characterized by three criteria.
 - 1. Prerequisite knowledge and capabilities needed
 - 2. Additional secret information deduced
 - 3. Effort required

Attack Types

- Prior knowledge scenarios
 - Ciphertext Only
 - Known Plaintext
 - Chosen Plaintext
 - Adaptive Chosen Plaintext
 - Differential Cryptanalysis
 - Chosen ciphertext
 - Adaptive chosen ciphertext
- Symmetric Algorithm Attacks
 - Brute Force
 - Meet in the Middle
 - Statistical

- Hash Attacks
 - Birthday attack
- Network Attacks
 - Man in the Middle
 - Replay
- External attacks:
 - Black-bag cryptanalysis
 - Rubber-hose cryptanalysis

- Ciphertext Only
 - Cryptanalyst obtains several ciphertext samples.
 - Without plaintext
 - Goal: Determine key.
 - Most difficult type of attack.
 - Requires a very large ciphertext sample.
- Known Plaintext
 - Based upon ciphertext/corresponding plaintext samples.
 - Could be partial (repeating headers)
 - Goal: determine key

- Chosen Plaintext
 - Cryptanalyst can choose what plain text message he wishes to encrypt and view the results.
 - Much, much, stronger than known plain text attack.
 - Optimum type of attack.

Adaptive Chosen Plaintext

Special case of chosen-plaintext attack in which the cryptanalyst is able to choose plaintext samples dynamically, and alter his or her choices based on the results of previous encryptions.

Linear Cryptanalysis

Specific type of chosen plaintext attack

- Succeeded in 1992 against DES
 - Took 50 days
 - Took 2¹⁴ operations
- Faster than brute force but not relevant ...

Differential Cryptanalysis

Differential Cryptanalysis

- Specific type of chosen plaintext attack.
 - Looks at the difference between two text blocks
 - Makes use of the fact that after a specific number of rounds, diverse differences bring out specific intermediate results with different probabilities.
 - Based on this, and the known difference between input and output, a statistical forecast can be made about the key
- Goal: obtain key

- Chosen-ciphertext
 - Cryptanalyst may choose a piece of cipher text and attempt to obtain the corresponding plaintext.
 - Generally utilized with public-key cryptosystems
- Adaptive-chosen-ciphertext
 - Scenario in which a cryptanalyst has free use of a piece of decryption hardware, but is unable to extract the decryption key from it.

Symmetric Algorithm Attacks

- Brute Force
- Meet in the middle
- Differential cryptanalysis
- Statistical

Brute Force

- Originally meant trying every possible key until correct key is identified.
 - Advances in computing performance over time makes brute force an increasingly practical attack against fixed length keys.
 - In certain contexts, a dictionary attack can be considered a form of brute force.
 - Now, most often implemented as smart brute force attacks
- Not all cryptosystems utilize key space appropriately.
 - Those that don't are vulnerable to 'smart' brute force attacks.
 - Makes key likely to be found without searching the entire keyspace.

Symmetric Attacks

Meet in the Middle

- Applied to double encryption schemes by encrypting known plaintext from one end with each possible key and comparing the results in the middle.
 - Works brute force from both ends.
 - Why 2DES doesn't work

Statistical

Exploiting the lack of randomness in key generation.

Hash Attacks

Birthday attack

- Usually applied to the probability of two different messages using the same hash function that produces a common message digest or
- Given a message and its corresponding message digest, finding another message that when passed through the same hash function generates the same specific message digest.

Network Attacks

- Man in the Middle
 - An attacker taking advantage of the store and forward nature of a network.
 - Works by intercepting messages and forwarding modified versions of the original messages while in-between two parties attempting secure communications.
 - SSL vulnerability

Algorithm Criteria

- A good algorithm must withstand a chosen plaintext attack, otherwise it is not secure.
- If known plain text or a cipher text only attack succeeds, then algorithm should be discarded.

Side Channel Attack

References FM 34-40-2, Basic Cryptanalysis http://www.umich.edu/~umich/fm-34-40-2/